

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$

SR = ratio of perimeters

Thm 8-6: Perimeters & Areas of Similar Figures

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$

 $SR = ratio of perimeters: \frac{a}{b} = \frac{?}{?}$

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$

 $SR = ratio of perimeters: \frac{a}{b} = \frac{Perim_a}{?}$

Thm 8-6: Perimeters & Areas of Similar Figures

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$

SR = ratio of perimeters: $\frac{a}{b} = \frac{Perim_a}{Perim_b}$

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$

 $SR = ratio of perimeters: \frac{a}{b} = \frac{Perim_a}{Perim_b}$

 SR^2 = ratio of areas

Thm 8-6: Perimeters & Areas of Similar Figures

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$

$$SR = ratio of perimeters: \frac{a}{b} = \frac{Perim_{a}}{Perim_{b}}$$

$$SR^2$$
 = ratio of areas: $\frac{a^2}{b^2} = \frac{?}{?}$

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$

$$SR = ratio of perimeters: \frac{a}{b} = \frac{Perim_{a}}{Perim_{b}}$$

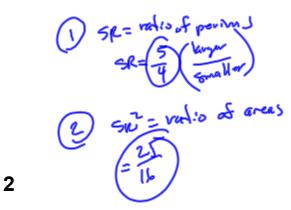
 SR^2 = ratio of areas: $\frac{a^2}{b^2} = \frac{Area_a}{?}$

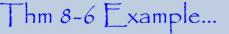
Thm 8-6: Perimeters & Areas of Similar Figures

Given 2 similar figures with a similarity ratio (SR) of $\frac{a}{b}$ as a c

$$SR = ratio of perimeters: \frac{a}{b} = \frac{Perim_{a}}{Perim_{b}}$$

$$SR^2$$
 = ratio of areas: $\frac{a^2}{b^2} = \frac{Area_a}{Area_b}$




1 Go to the next pag

Thm 8-6 Example

These Δ 's are similar.

- 1) Find ratio (larger to smaller) of their perims.
- 2) Find ratio (larger to smaller) of their areas.

3) The ratio of the lengths of the corresponding sides of two regular octagons is 8:3. The area of the larger is 320ft².
Find the area of the smaller.

SR is 8.7 or 3
$$\frac{1}{5}$$
 $\frac{1}{5}$ $\frac{1}{5}$

6.25

3

Thm 8-6 Example... 4) Benita plants the same crop in 2 rectangular fields, each with side lengths in a ratio of 2:3. His info is c distrator. Each dimension of the larger field is 3 1/2 times the dimension of the smaller. Seeding the small field costs \$8. How much does seeding the larger field cost? 4 4 4 5 6 7 8 7 8 9 8 9 8 9 9 9 9 9 9 9 9 9

5 Go to next page...

Thm 8-6 Example...

The areas of 2 similar polys are $32in^2 \& 72in^2$.

- 5) What is their SR? $\frac{7}{3}$

6) What is the ratio of their perimeters? = $5R = \frac{3}{3}$ Rolio as areas = $5R^{2}$ $3R^{4} = 3R^{2}$ (small \rightarrow harge) $4 = 5R^{2}$ $4 = 5R^{2}$ $7R = 5R^{2}$ 3R = 5R

6

Go to the next page... 7

Thm 8-6 Example...

The SR of 2 similar Δ 's is 5:3.

The perim of the smaller is 36 cm & its area is 18 cm^2 .

7) Find the perimeter of the larger Δ . = 60

8) Find the area of the larger Δ . 50

8

_8-6 Homework Problems

Pg 456 #1-22, 24, 25-32, 35-37, 40-44